# Hide warnings if there are any
import warnings
warnings.filterwarnings('ignore')
# R magic setting
%load_ext rpy2.ipython
%R require(tidyverse)
# SQL magic setting
%load_ext sql
%sql sqlite://
#%config SqlMagic.feedback = False
import pandas as pd
import seaborn as sns
import rpy2.robjects as ro
from rpy2.robjects import pandas2ri
%%R
#data(iris)
#iris = rename(iris,
# Sepal_Length = Sepal.Length,
# Sepal_Width = Sepal.Width,
# Petal_Length = Petal.Length,
# Petal_Width = Petal.Width
# )
#iris_db <- src_sqlite("iris_db.sqlite3", create = TRUE)
#copy_to(iris_db, iris, temporary = FALSE)
iris_db = src_sqlite("iris_db.sqlite3")
iris <- tbl(iris_db, "iris")
print(ro.r('iris %>% group_by(Species) %>% \
summarise_each(funs(mean(., na.rm = TRUE)))'))
print(ro.r(' \
iris_db%>% \
tbl(sql( \
" \
SELECT * \
FROM iris \
" \
)) \
'))
%sql sqlite:///iris_db.sqlite3
%%sql
SELECT name FROM sqlite_master WHERE type='table'
%%sql
-- Select everything
SELECT *
FROM iris
limit 5
iris = %sql SELECT * FROM iris
iris_df = iris.DataFrame()
iris_df.info()
iris_df.groupby('Species').mean()
%matplotlib inline
sns.pairplot(iris_df, hue="Species")