SCORE Fun!

Scoring Models in R, SAS with a Credit Scoring Example

CSJP

A teacher might score like this …

Load Data Set

# Load Roster Data
load("./RData/OriginalRoster.RData")
print(roster)
##              Student Math Science English
## 1         John Davis  502      95      25
## 2    Angela Williams  600      99      22
## 3   Bullwinkle Moose  412      80      18
## 4        David Jones  358      82      15
## 5  Janice Markhammer  495      75      20
## 6     Cheryl Cushing  512      85      28
## 7     Reuven Ytzrhak  410      80      15
## 8          Greg Knox  625      95      30
## 9       Joel England  573      89      27
## 10      Mary Rayburn  522      86      18

Modeling

z <- scale(roster[, 2:4])  # standardize different scales
score <- apply(z, 1, mean)  # take means
roster <- cbind(roster, score)  # combine with original roster
print(roster)
##              Student Math Science English   score
## 1         John Davis  502      95      25  0.5592
## 2    Angela Williams  600      99      22  0.9238
## 3   Bullwinkle Moose  412      80      18 -0.8565
## 4        David Jones  358      82      15 -1.1620
## 5  Janice Markhammer  495      75      20 -0.6290
## 6     Cheryl Cushing  512      85      28  0.3532
## 7     Reuven Ytzrhak  410      80      15 -1.0476
## 8          Greg Knox  625      95      30  1.3379
## 9       Joel England  573      89      27  0.6978
## 10      Mary Rayburn  522      86      18 -0.1768

Evaluation

y <- quantile(score, c(0.8, 0.6, 0.4, 0.2))  # set criteria
print(y)
##     80%     60%     40%     20% 
##  0.7430  0.4356 -0.3577 -0.8948
roster$grade[score >= y[1]] <- "A"  # grading
roster$grade[score < y[1] & score >= y[2]] <- "B"
roster$grade[score < y[2] & score >= y[3]] <- "C"
roster$grade[score < y[3] & score >= y[4]] <- "D"
roster$grade[score < y[4]] <- "F"

Performance

name <- strsplit(as.character(roster$Student), " ")
lastname <- sapply(name, "[", 2)
firstname <- sapply(name, "[", 1)
roster <- cbind(`First Name` = firstname, `Last Name` = lastname, roster[, -1])
roster <- roster[order(score, decreasing = TRUE), ]
# Score Report
(click on any column header to sort table automatically! )
ID First Name Last Name Math Science English score grade
8 Greg Knox 625.00 95.00 30.00 1.34 A
2 Angela Williams 600.00 99.00 22.00 0.92 A
9 Joel England 573.00 89.00 27.00 0.70 B
1 John Davis 502.00 95.00 25.00 0.56 B
6 Cheryl Cushing 512.00 85.00 28.00 0.35 C
10 Mary Rayburn 522.00 86.00 18.00 -0.18 C
5 Janice Markhammer 495.00 75.00 20.00 -0.63 D
3 Bullwinkle Moose 412.00 80.00 18.00 -0.86 D
7 Reuven Ytzrhak 410.00 80.00 15.00 -1.05 F
4 David Jones 358.00 82.00 15.00 -1.16 F

A researcher might score like this …

Load Data Set

# Load German Credit data
require(caret)
data(GermanCredit)
dim(GermanCredit)[1]  # No. of obs
## [1] 1000
dim(GermanCredit)[2]  # No. of variables (original)
## [1] 62

Modeling (1)

# Build a container for German Credit Data Set
gcDS = new.env()
# check container data after clean-up and partitions

# training data
length(attributes(gcDS$train)$names)  # No. of variables
## [1] 22
length(attributes(gcDS$train)$row.names)  # No. of obs
## [1] 700
# testing data
length(attributes(gcDS$test)$names)  # No. of variables
## [1] 22
length(attributes(gcDS$test)$row.names)  # No. of obs
## [1] 300

Modeling (2)

# Build a container for Generalized Linear Model (GLM)
gcGLM = new.env(parent = gcDS)
# Build a container for Random Forest Model (RFOREST)
require(randomForest)
gcRFOREST = new.env(parent = gcDS)
# Build a container for Support Vector Machines Model (SVM)
require(e1071)
gcSVM = new.env(parent = gcDS)
# Build a container for 1-hidden-layer Neural Network Model (NNET)
require(nnet)
gcNNET = new.env(parent = gcDS)
# Build a container for Stochastic Boosting Model (BOOST)
require(ada)
gcBOOST = new.env(parent = gcDS)
# Build a container for Naive Bayes Classifier Model (NBayes)
require(e1071)
gcNBayes = new.env(parent = gcDS)
# Build a container for k-Nearest Neighbour Classification Model (KNN)
require(class)
gcKNN = new.env(parent = gcDS)
# Build a container for Linear Discriminant Analysis Model (LDA)
require(MASS)
gcLDA = new.env(parent = gcDS)

Evaluation (1)

# Area Under the ROC Curve (AUC)
GLM rFOREST SVM NNET BOOST NBayes kNN LDA
AUC 76.00% 77.04% 74.37% 74.50% 74.34% 72.09% 63.05% 76.64%
# ROC curves

Evaluation (2)

# Given Cost Matrix (Actual vs. Predicted)
Bad Good
Bad 0 5
Good 1 0
# Cost Curves

Performance

# Risk Chart

Modeling in R, Scoring in SAS chosen for ‘that’ Big Data

Verifying their scores for comparison.
(click on any column header to sort table automatically! )
Obs credit r_score s_score error
1 Good 0.59740 0.59740 0
2 Bad 0.33333 0.33333 0
3 Good 0.86486 0.86486 0
4 Bad 0.21212 0.21212 0
5 Good 0.59740 0.59740 0
6 Good 0.86486 0.86486 0
7 Good 0.86486 0.86486 0
8 Bad 0.40323 0.40323 0
9 Good 0.86486 0.86486 0
10 Bad 0.40323 0.40323 0
11 Bad 0.40323 0.40323 0
12 Bad 0.21212 0.21212 0
13 Bad 0.40323 0.40323 0
14 Good 0.59740 0.59740 0
15 Good 0.59740 0.59740 0
16 Good 0.59740 0.59740 0
17 Good 0.86486 0.86486 0
18 Good 0.59740 0.59740 0
19 Bad 0.40323 0.40323 0
20 Good 0.86486 0.86486 0
21 Good 0.86486 0.86486 0
22 Good 0.59740 0.59740 0
23 Good 0.59740 0.59740 0
24 Good 0.69355 0.69355 0
25 Good 0.86486 0.86486 0
26 Good 0.59740 0.59740 0
27 Good 0.86486 0.86486 0
28 Good 0.86486 0.86486 0
29 Good 0.87234 0.87234 0
30 Bad 0.21212 0.21212 0
31 Good 0.87234 0.87234 0
32 Good 0.59740 0.59740 0
33 Good 0.69355 0.69355 0
34 Good 0.86486 0.86486 0
35 Good 0.86486 0.86486 0
36 Bad 0.40323 0.40323 0
37 Good 0.86486 0.86486 0
38 Good 0.86486 0.86486 0
39 Good 0.86486 0.86486 0
40 Good 0.87234 0.87234 0
41 Good 0.86486 0.86486 0
42 Good 0.69355 0.69355 0
43 Good 0.87234 0.87234 0
44 Good 0.59740 0.59740 0
45 Bad 0.21212 0.21212 0
46 Good 0.86486 0.86486 0
47 Good 0.86486 0.86486 0
48 Good 0.59740 0.59740 0
49 Good 0.86486 0.86486 0
50 Good 0.86486 0.86486 0
51 Good 0.69355 0.69355 0
52 Bad 0.40323 0.40323 0
53 Good 0.86486 0.86486 0
54 Good 0.86486 0.86486 0
55 Bad 0.40323 0.40323 0
56 Good 0.86486 0.86486 0
57 Good 0.69355 0.69355 0
58 Good 0.86486 0.86486 0
59 Good 0.86486 0.86486 0
60 Bad 0.21212 0.21212 0
61 Good 0.87234 0.87234 0
62 Good 0.87234 0.87234 0
63 Bad 0.40323 0.40323 0
64 Bad 0.40323 0.40323 0
65 Good 0.86486 0.86486 0
66 Good 0.86486 0.86486 0
67 Good 0.86486 0.86486 0
68 Good 0.87234 0.87234 0
69 Good 0.86486 0.86486 0
70 Good 0.86486 0.86486 0
71 Good 0.86486 0.86486 0
72 Good 0.86486 0.86486 0
73 Good 0.59740 0.59740 0
74 Bad 0.33333 0.33333 0
75 Bad 0.21212 0.21212 0
76 Good 0.59740 0.59740 0
77 Bad 0.21212 0.21212 0
78 Bad 0.40323 0.40323 0
79 Good 0.86486 0.86486 0
80 Bad 0.40323 0.40323 0
81 Good 0.86486 0.86486 0
82 Good 0.86486 0.86486 0
83 Good 0.86486 0.86486 0
84 Good 0.59740 0.59740 0
85 Good 0.59740 0.59740 0
86 Good 0.86486 0.86486 0
87 Bad 0.40323 0.40323 0
88 Good 0.69355 0.69355 0
89 Good 0.59740 0.59740 0
90 Good 0.59740 0.59740 0
91 Good 0.86486 0.86486 0
92 Good 0.59740 0.59740 0
93 Good 0.86486 0.86486 0
94 Good 0.86486 0.86486 0
95 Good 0.87234 0.87234 0
96 Bad 0.40323 0.40323 0
97 Good 0.86486 0.86486 0
98 Good 0.69355 0.69355 0
99 Bad 0.33333 0.33333 0
100 Good 0.69355 0.69355 0
101 Good 0.86486 0.86486 0
102 Bad 0.40323 0.40323 0
103 Good 0.86486 0.86486 0
104 Bad 0.40323 0.40323 0
105 Good 0.86486 0.86486 0
106 Bad 0.40323 0.40323 0
107 Good 0.86486 0.86486 0
108 Bad 0.40323 0.40323 0
109 Good 0.59740 0.59740 0
110 Good 0.87234 0.87234 0
111 Good 0.69355 0.69355 0
112 Good 0.86486 0.86486 0
113 Good 0.87234 0.87234 0
114 Good 0.86486 0.86486 0
115 Good 0.59740 0.59740 0
116 Good 0.86486 0.86486 0
117 Bad 0.21212 0.21212 0
118 Good 0.59740 0.59740 0
119 Bad 0.21212 0.21212 0
120 Good 0.69355 0.69355 0
121 Good 0.59740 0.59740 0
122 Good 0.86486 0.86486 0
123 Good 0.86486 0.86486 0
124 Good 0.86486 0.86486 0
125 Good 0.87234 0.87234 0
126 Good 0.59740 0.59740 0
127 Good 0.59740 0.59740 0
128 Bad 0.40323 0.40323 0
129 Bad 0.40323 0.40323 0
130 Good 0.59740 0.59740 0
131 Good 0.69355 0.69355 0
132 Bad 0.21212 0.21212 0
133 Good 0.86486 0.86486 0
134 Good 0.86486 0.86486 0
135 Good 0.86486 0.86486 0
136 Good 0.86486 0.86486 0
137 Good 0.86486 0.86486 0
138 Good 0.87234 0.87234 0
139 Good 0.87234 0.87234 0
140 Good 0.86486 0.86486 0
141 Good 0.86486 0.86486 0
142 Bad 0.40323 0.40323 0
143 Good 0.59740 0.59740 0
144 Good 0.59740 0.59740 0
145 Good 0.86486 0.86486 0
146 Good 0.69355 0.69355 0
147 Good 0.59740 0.59740 0
148 Good 0.86486 0.86486 0
149 Bad 0.21212 0.21212 0
150 Good 0.86486 0.86486 0
151 Good 0.86486 0.86486 0
152 Good 0.86486 0.86486 0
153 Good 0.86486 0.86486 0
154 Good 0.69355 0.69355 0
155 Good 0.69355 0.69355 0
156 Good 0.59740 0.59740 0
157 Good 0.59740 0.59740 0
158 Good 0.59740 0.59740 0
159 Good 0.69355 0.69355 0
160 Good 0.86486 0.86486 0
161 Good 0.86486 0.86486 0
162 Good 0.86486 0.86486 0
163 Good 0.86486 0.86486 0
164 Bad 0.40323 0.40323 0
165 Good 0.86486 0.86486 0
166 Good 0.86486 0.86486 0
167 Good 0.59740 0.59740 0
168 Good 0.87234 0.87234 0
169 Good 0.86486 0.86486 0
170 Bad 0.33333 0.33333 0
171 Good 0.59740 0.59740 0
172 Good 0.86486 0.86486 0
173 Bad 0.40323 0.40323 0
174 Good 0.87234 0.87234 0
175 Good 0.59740 0.59740 0
176 Good 0.86486 0.86486 0
177 Good 0.59740 0.59740 0
178 Good 0.59740 0.59740 0
179 Good 0.86486 0.86486 0
180 Good 0.59740 0.59740 0
181 Good 0.86486 0.86486 0
182 Bad 0.33333 0.33333 0
183 Good 0.59740 0.59740 0
184 Good 0.86486 0.86486 0
185 Bad 0.40323 0.40323 0
186 Good 0.86486 0.86486 0
187 Bad 0.40323 0.40323 0
188 Bad 0.40323 0.40323 0
189 Good 0.59740 0.59740 0
190 Bad 0.40323 0.40323 0
191 Good 0.86486 0.86486 0
192 Good 0.69355 0.69355 0
193 Bad 0.40323 0.40323 0
194 Good 0.86486 0.86486 0
195 Good 0.69355 0.69355 0
196 Bad 0.40323 0.40323 0
197 Good 0.86486 0.86486 0
198 Good 0.69355 0.69355 0
199 Good 0.69355 0.69355 0
200 Bad 0.40323 0.40323 0
201 Good 0.86486 0.86486 0
202 Good 0.59740 0.59740 0
203 Good 0.86486 0.86486 0
204 Good 0.59740 0.59740 0
205 Good 0.86486 0.86486 0
206 Good 0.59740 0.59740 0
207 Good 0.86486 0.86486 0
208 Bad 0.40323 0.40323 0
209 Good 0.59740 0.59740 0
210 Good 0.86486 0.86486 0
211 Good 0.86486 0.86486 0
212 Good 0.86486 0.86486 0
213 Good 0.59740 0.59740 0
214 Good 0.86486 0.86486 0
215 Good 0.86486 0.86486 0
216 Good 0.69355 0.69355 0
217 Good 0.59740 0.59740 0
218 Good 0.86486 0.86486 0
219 Good 0.59740 0.59740 0
220 Good 0.86486 0.86486 0
221 Good 0.87234 0.87234 0
222 Good 0.59740 0.59740 0
223 Good 0.86486 0.86486 0
224 Good 0.86486 0.86486 0
225 Good 0.86486 0.86486 0
226 Good 0.86486 0.86486 0
227 Good 0.69355 0.69355 0
228 Good 0.59740 0.59740 0
229 Good 0.86486 0.86486 0
230 Good 0.59740 0.59740 0
231 Good 0.86486 0.86486 0
232 Good 0.86486 0.86486 0
233 Good 0.86486 0.86486 0
234 Good 0.87234 0.87234 0
235 Good 0.86486 0.86486 0
236 Good 0.59740 0.59740 0
237 Good 0.69355 0.69355 0
238 Good 0.69355 0.69355 0
239 Good 0.86486 0.86486 0
240 Good 0.59740 0.59740 0
241 Good 0.59740 0.59740 0
242 Good 0.86486 0.86486 0
243 Bad 0.21212 0.21212 0
244 Good 0.86486 0.86486 0
245 Good 0.86486 0.86486 0
246 Good 0.86486 0.86486 0
247 Good 0.86486 0.86486 0
248 Good 0.86486 0.86486 0
249 Good 0.86486 0.86486 0
250 Good 0.86486 0.86486 0
251 Good 0.59740 0.59740 0
252 Good 0.86486 0.86486 0
253 Bad 0.40323 0.40323 0
254 Good 0.86486 0.86486 0
255 Good 0.69355 0.69355 0
256 Bad 0.33333 0.33333 0
257 Good 0.86486 0.86486 0
258 Good 0.59740 0.59740 0
259 Good 0.86486 0.86486 0
260 Good 0.86486 0.86486 0
261 Good 0.59740 0.59740 0
262 Good 0.59740 0.59740 0
263 Good 0.59740 0.59740 0
264 Good 0.86486 0.86486 0
265 Good 0.86486 0.86486 0
266 Bad 0.40323 0.40323 0
267 Good 0.86486 0.86486 0
268 Good 0.86486 0.86486 0
269 Good 0.59740 0.59740 0
270 Good 0.86486 0.86486 0
271 Good 0.86486 0.86486 0
272 Good 0.86486 0.86486 0
273 Good 0.69355 0.69355 0
274 Bad 0.33333 0.33333 0
275 Good 0.59740 0.59740 0
276 Good 0.86486 0.86486 0
277 Good 0.86486 0.86486 0
278 Good 0.59740 0.59740 0
279 Good 0.86486 0.86486 0
280 Good 0.86486 0.86486 0
281 Good 0.86486 0.86486 0
282 Good 0.86486 0.86486 0
283 Good 0.86486 0.86486 0
284 Good 0.86486 0.86486 0
285 Good 0.69355 0.69355 0
286 Bad 0.21212 0.21212 0
287 Bad 0.21212 0.21212 0
288 Good 0.69355 0.69355 0
289 Good 0.87234 0.87234 0
290 Good 0.59740 0.59740 0
291 Good 0.86486 0.86486 0
292 Bad 0.40323 0.40323 0
293 Good 0.59740 0.59740 0
294 Good 0.86486 0.86486 0
295 Good 0.86486 0.86486 0
296 Bad 0.40323 0.40323 0
297 Good 0.86486 0.86486 0
298 Good 0.86486 0.86486 0
299 Good 0.86486 0.86486 0
300 Good 0.69355 0.69355 0
301 Good 0.86486 0.86486 0
302 Bad 0.40323 0.40323 0
303 Good 0.86486 0.86486 0
304 Good 0.59740 0.59740 0
305 Good 0.86486 0.86486 0
306 Good 0.86486 0.86486 0
307 Good 0.86486 0.86486 0
308 Good 0.59740 0.59740 0
309 Good 0.87234 0.87234 0
310 Good 0.87234 0.87234 0
311 Good 0.69355 0.69355 0
312 Good 0.86486 0.86486 0
313 Good 0.86486 0.86486 0
314 Bad 0.40323 0.40323 0
315 Good 0.86486 0.86486 0
316 Bad 0.21212 0.21212 0
317 Good 0.59740 0.59740 0
318 Good 0.69355 0.69355 0
319 Good 0.86486 0.86486 0
320 Good 0.59740 0.59740 0
321 Bad 0.40323 0.40323 0
322 Good 0.59740 0.59740 0
323 Good 0.59740 0.59740 0
324 Good 0.59740 0.59740 0
325 Good 0.86486 0.86486 0
326 Good 0.59740 0.59740 0
327 Good 0.86486 0.86486 0
328 Good 0.86486 0.86486 0
329 Good 0.86486 0.86486 0
330 Bad 0.40323 0.40323 0
331 Good 0.59740 0.59740 0
332 Good 0.86486 0.86486 0
333 Good 0.69355 0.69355 0
334 Good 0.86486 0.86486 0
335 Good 0.59740 0.59740 0
336 Good 0.59740 0.59740 0
337 Bad 0.40323 0.40323 0
338 Good 0.59740 0.59740 0
339 Good 0.59740 0.59740 0
340 Bad 0.40323 0.40323 0
341 Bad 0.40323 0.40323 0
342 Good 0.59740 0.59740 0
343 Good 0.87234 0.87234 0
344 Good 0.87234 0.87234 0
345 Good 0.86486 0.86486 0
346 Good 0.86486 0.86486 0
347 Good 0.87234 0.87234 0
348 Good 0.69355 0.69355 0
349 Good 0.86486 0.86486 0
350 Good 0.69355 0.69355 0
351 Good 0.86486 0.86486 0
352 Bad 0.40323 0.40323 0
353 Good 0.86486 0.86486 0
354 Good 0.59740 0.59740 0
355 Good 0.86486 0.86486 0
356 Bad 0.33333 0.33333 0
357 Good 0.86486 0.86486 0
358 Good 0.86486 0.86486 0
359 Good 0.86486 0.86486 0
360 Good 0.59740 0.59740 0
361 Good 0.69355 0.69355 0
362 Good 0.86486 0.86486 0
363 Good 0.86486 0.86486 0
364 Good 0.86486 0.86486 0
365 Good 0.59740 0.59740 0
366 Good 0.86486 0.86486 0
367 Good 0.86486 0.86486 0
368 Good 0.59740 0.59740 0
369 Bad 0.21212 0.21212 0
370 Good 0.87234 0.87234 0
371 Good 0.86486 0.86486 0
372 Good 0.86486 0.86486 0
373 Good 0.86486 0.86486 0
374 Good 0.86486 0.86486 0
375 Good 0.69355 0.69355 0
376 Bad 0.21212 0.21212 0
377 Good 0.86486 0.86486 0
378 Good 0.86486 0.86486 0
379 Bad 0.40323 0.40323 0
380 Good 0.86486 0.86486 0
381 Good 0.59740 0.59740 0
382 Bad 0.40323 0.40323 0
383 Good 0.86486 0.86486 0
384 Good 0.86486 0.86486 0
385 Good 0.86486 0.86486 0
386 Good 0.86486 0.86486 0
387 Good 0.86486 0.86486 0
388 Bad 0.40323 0.40323 0
389 Good 0.69355 0.69355 0
390 Good 0.86486 0.86486 0
391 Good 0.86486 0.86486 0
392 Good 0.87234 0.87234 0
393 Bad 0.21212 0.21212 0
394 Good 0.59740 0.59740 0
395 Good 0.86486 0.86486 0
396 Good 0.69355 0.69355 0
397 Good 0.59740 0.59740 0
398 Bad 0.21212 0.21212 0
399 Good 0.87234 0.87234 0
400 Good 0.86486 0.86486 0
401 Good 0.86486 0.86486 0
402 Good 0.87234 0.87234 0
403 Good 0.86486 0.86486 0
404 Good 0.86486 0.86486 0
405 Good 0.69355 0.69355 0
406 Bad 0.40323 0.40323 0
407 Good 0.86486 0.86486 0
408 Good 0.59740 0.59740 0
409 Good 0.86486 0.86486 0
410 Good 0.86486 0.86486 0
411 Bad 0.40323 0.40323 0
412 Good 0.86486 0.86486 0
413 Good 0.86486 0.86486 0
414 Good 0.86486 0.86486 0
415 Good 0.59740 0.59740 0
416 Good 0.86486 0.86486 0
417 Good 0.59740 0.59740 0
418 Good 0.59740 0.59740 0
419 Good 0.86486 0.86486 0
420 Good 0.69355 0.69355 0
421 Good 0.86486 0.86486 0
422 Good 0.69355 0.69355 0
423 Good 0.87234 0.87234 0
424 Good 0.86486 0.86486 0
425 Good 0.69355 0.69355 0
426 Bad 0.40323 0.40323 0
427 Good 0.86486 0.86486 0
428 Good 0.86486 0.86486 0
429 Good 0.86486 0.86486 0
430 Good 0.59740 0.59740 0
431 Good 0.86486 0.86486 0
432 Bad 0.40323 0.40323 0
433 Good 0.59740 0.59740 0
434 Good 0.86486 0.86486 0
435 Good 0.59740 0.59740 0
436 Good 0.87234 0.87234 0
437 Good 0.86486 0.86486 0
438 Good 0.86486 0.86486 0
439 Bad 0.21212 0.21212 0
440 Good 0.86486 0.86486 0
441 Good 0.86486 0.86486 0
442 Good 0.59740 0.59740 0
443 Bad 0.40323 0.40323 0
444 Good 0.86486 0.86486 0
445 Bad 0.40323 0.40323 0
446 Good 0.86486 0.86486 0
447 Bad 0.21212 0.21212 0
448 Good 0.87234 0.87234 0
449 Good 0.86486 0.86486 0
450 Good 0.69355 0.69355 0
451 Good 0.86486 0.86486 0
452 Good 0.86486 0.86486 0
453 Good 0.86486 0.86486 0
454 Good 0.86486 0.86486 0
455 Good 0.59740 0.59740 0
456 Good 0.86486 0.86486 0
457 Good 0.59740 0.59740 0
458 Good 0.59740 0.59740 0
459 Good 0.59740 0.59740 0
460 Good 0.86486 0.86486 0
461 Bad 0.21212 0.21212 0
462 Good 0.59740 0.59740 0
463 Good 0.87234 0.87234 0
464 Good 0.69355 0.69355 0
465 Good 0.86486 0.86486 0
466 Good 0.59740 0.59740 0
467 Good 0.59740 0.59740 0
468 Good 0.86486 0.86486 0
469 Good 0.86486 0.86486 0
470 Good 0.86486 0.86486 0
471 Good 0.69355 0.69355 0
472 Good 0.59740 0.59740 0
473 Good 0.59740 0.59740 0
474 Good 0.86486 0.86486 0
475 Bad 0.40323 0.40323 0
476 Good 0.59740 0.59740 0
477 Good 0.86486 0.86486 0
478 Good 0.86486 0.86486 0
479 Good 0.87234 0.87234 0
480 Good 0.59740 0.59740 0
481 Good 0.87234 0.87234 0
482 Bad 0.40323 0.40323 0
483 Good 0.59740 0.59740 0
484 Good 0.86486 0.86486 0
485 Good 0.86486 0.86486 0
486 Bad 0.40323 0.40323 0
487 Good 0.86486 0.86486 0
488 Good 0.86486 0.86486 0
489 Good 0.86486 0.86486 0
490 Good 0.86486 0.86486 0
491 Good 0.86486 0.86486 0
492 Bad 0.40323 0.40323 0
493 Good 0.86486 0.86486 0
494 Good 0.69355 0.69355 0
495 Good 0.59740 0.59740 0
496 Good 0.59740 0.59740 0
497 Good 0.69355 0.69355 0
498 Good 0.86486 0.86486 0
499 Good 0.87234 0.87234 0
500 Good 0.86486 0.86486 0
501 Good 0.59740 0.59740 0
502 Bad 0.21212 0.21212 0
503 Good 0.86486 0.86486 0
504 Good 0.69355 0.69355 0
505 Good 0.59740 0.59740 0
506 Good 0.86486 0.86486 0
507 Good 0.86486 0.86486 0
508 Good 0.69355 0.69355 0
509 Good 0.86486 0.86486 0
510 Good 0.86486 0.86486 0
511 Good 0.59740 0.59740 0
512 Good 0.86486 0.86486 0
513 Good 0.86486 0.86486 0
514 Good 0.87234 0.87234 0
515 Good 0.86486 0.86486 0
516 Good 0.59740 0.59740 0
517 Good 0.59740 0.59740 0
518 Good 0.86486 0.86486 0
519 Good 0.59740 0.59740 0
520 Good 0.86486 0.86486 0
521 Good 0.86486 0.86486 0
522 Good 0.59740 0.59740 0
523 Bad 0.21212 0.21212 0
524 Good 0.86486 0.86486 0
525 Good 0.87234 0.87234 0
526 Bad 0.40323 0.40323 0
527 Good 0.86486 0.86486 0
528 Good 0.86486 0.86486 0
529 Bad 0.21212 0.21212 0
530 Good 0.59740 0.59740 0
531 Bad 0.40323 0.40323 0
532 Good 0.69355 0.69355 0
533 Good 0.86486 0.86486 0
534 Good 0.86486 0.86486 0
535 Good 0.86486 0.86486 0
536 Good 0.86486 0.86486 0
537 Good 0.59740 0.59740 0
538 Bad 0.40323 0.40323 0
539 Bad 0.21212 0.21212 0
540 Good 0.86486 0.86486 0
541 Good 0.87234 0.87234 0
542 Good 0.86486 0.86486 0
543 Good 0.59740 0.59740 0
544 Good 0.86486 0.86486 0
545 Good 0.86486 0.86486 0
546 Good 0.59740 0.59740 0
547 Good 0.86486 0.86486 0
548 Good 0.86486 0.86486 0
549 Good 0.59740 0.59740 0
550 Good 0.86486 0.86486 0
551 Good 0.86486 0.86486 0
552 Good 0.86486 0.86486 0
553 Bad 0.21212 0.21212 0
554 Good 0.69355 0.69355 0
555 Bad 0.40323 0.40323 0
556 Bad 0.40323 0.40323 0
557 Good 0.69355 0.69355 0
558 Good 0.86486 0.86486 0
559 Good 0.59740 0.59740 0
560 Good 0.87234 0.87234 0
561 Good 0.59740 0.59740 0
562 Good 0.59740 0.59740 0
563 Good 0.86486 0.86486 0
564 Good 0.69355 0.69355 0
565 Good 0.69355 0.69355 0
566 Good 0.69355 0.69355 0
567 Good 0.59740 0.59740 0
568 Good 0.86486 0.86486 0
569 Good 0.69355 0.69355 0
570 Bad 0.21212 0.21212 0
571 Good 0.59740 0.59740 0
572 Good 0.86486 0.86486 0
573 Good 0.86486 0.86486 0
574 Good 0.59740 0.59740 0
575 Bad 0.40323 0.40323 0
576 Good 0.86486 0.86486 0
577 Good 0.87234 0.87234 0
578 Good 0.86486 0.86486 0
579 Bad 0.40323 0.40323 0
580 Good 0.86486 0.86486 0
581 Good 0.87234 0.87234 0
582 Good 0.87234 0.87234 0
583 Good 0.86486 0.86486 0
584 Bad 0.40323 0.40323 0
585 Good 0.86486 0.86486 0
586 Good 0.59740 0.59740 0
587 Good 0.59740 0.59740 0
588 Good 0.59740 0.59740 0
589 Good 0.59740 0.59740 0
590 Good 0.59740 0.59740 0
591 Good 0.59740 0.59740 0
592 Good 0.69355 0.69355 0
593 Good 0.86486 0.86486 0
594 Bad 0.40323 0.40323 0
595 Good 0.59740 0.59740 0
596 Good 0.69355 0.69355 0
597 Good 0.59740 0.59740 0
598 Bad 0.33333 0.33333 0
599 Good 0.86486 0.86486 0
600 Good 0.86486 0.86486 0
601 Good 0.87234 0.87234 0
602 Bad 0.40323 0.40323 0
603 Bad 0.40323 0.40323 0
604 Good 0.86486 0.86486 0
605 Good 0.86486 0.86486 0
606 Good 0.59740 0.59740 0
607 Good 0.86486 0.86486 0
608 Good 0.69355 0.69355 0
609 Good 0.86486 0.86486 0
610 Good 0.86486 0.86486 0
611 Good 0.59740 0.59740 0
612 Good 0.86486 0.86486 0
613 Good 0.59740 0.59740 0
614 Good 0.59740 0.59740 0
615 Good 0.86486 0.86486 0
616 Good 0.69355 0.69355 0
617 Good 0.69355 0.69355 0
618 Good 0.59740 0.59740 0
619 Good 0.69355 0.69355 0
620 Good 0.86486 0.86486 0
621 Bad 0.40323 0.40323 0
622 Good 0.86486 0.86486 0
623 Good 0.86486 0.86486 0
624 Good 0.59740 0.59740 0
625 Good 0.59740 0.59740 0
626 Good 0.86486 0.86486 0
627 Good 0.86486 0.86486 0
628 Good 0.69355 0.69355 0
629 Good 0.86486 0.86486 0
630 Good 0.86486 0.86486 0
631 Good 0.59740 0.59740 0
632 Good 0.59740 0.59740 0
633 Good 0.69355 0.69355 0
634 Good 0.86486 0.86486 0
635 Bad 0.40323 0.40323 0
636 Good 0.86486 0.86486 0
637 Good 0.86486 0.86486 0
638 Good 0.86486 0.86486 0
639 Good 0.86486 0.86486 0
640 Bad 0.21212 0.21212 0
641 Good 0.59740 0.59740 0
642 Bad 0.40323 0.40323 0
643 Good 0.86486 0.86486 0
644 Good 0.86486 0.86486 0
645 Good 0.59740 0.59740 0
646 Good 0.86486 0.86486 0
647 Good 0.59740 0.59740 0
648 Good 0.86486 0.86486 0
649 Good 0.86486 0.86486 0
650 Good 0.59740 0.59740 0
651 Bad 0.21212 0.21212 0
652 Bad 0.40323 0.40323 0
653 Good 0.59740 0.59740 0
654 Good 0.69355 0.69355 0
655 Good 0.86486 0.86486 0
656 Good 0.59740 0.59740 0
657 Bad 0.40323 0.40323 0
658 Good 0.86486 0.86486 0
659 Bad 0.40323 0.40323 0
660 Bad 0.40323 0.40323 0
661 Good 0.86486 0.86486 0
662 Good 0.59740 0.59740 0
663 Good 0.86486 0.86486 0
664 Bad 0.40323 0.40323 0
665 Good 0.86486 0.86486 0
666 Good 0.86486 0.86486 0
667 Good 0.69355 0.69355 0
668 Good 0.86486 0.86486 0
669 Good 0.59740 0.59740 0
670 Good 0.86486 0.86486 0
671 Good 0.86486 0.86486 0
672 Good 0.86486 0.86486 0
673 Good 0.86486 0.86486 0
674 Good 0.86486 0.86486 0
675 Good 0.86486 0.86486 0
676 Good 0.86486 0.86486 0
677 Good 0.86486 0.86486 0
678 Good 0.69355 0.69355 0
679 Good 0.59740 0.59740 0
680 Good 0.86486 0.86486 0
681 Good 0.86486 0.86486 0
682 Good 0.86486 0.86486 0
683 Good 0.86486 0.86486 0
684 Good 0.86486 0.86486 0
685 Good 0.69355 0.69355 0
686 Good 0.86486 0.86486 0
687 Good 0.86486 0.86486 0
688 Good 0.69355 0.69355 0
689 Good 0.86486 0.86486 0
690 Good 0.59740 0.59740 0
691 Good 0.59740 0.59740 0
692 Good 0.87234 0.87234 0
693 Good 0.69355 0.69355 0
694 Good 0.59740 0.59740 0
695 Good 0.86486 0.86486 0
696 Good 0.86486 0.86486 0
697 Good 0.87234 0.87234 0
698 Good 0.86486 0.86486 0
699 Good 0.86486 0.86486 0
700 Good 0.86486 0.86486 0
701 Good 0.86486 0.86486 0
702 Bad 0.21212 0.21212 0
703 Good 0.86486 0.86486 0
704 Good 0.69355 0.69355 0
705 Bad 0.40323 0.40323 0
706 Good 0.86486 0.86486 0
707 Good 0.69355 0.69355 0
708 Bad 0.40323 0.40323 0
709 Good 0.87234 0.87234 0
710 Good 0.87234 0.87234 0
711 Good 0.86486 0.86486 0
712 Good 0.59740 0.59740 0
713 Good 0.86486 0.86486 0
714 Good 0.59740 0.59740 0
715 Bad 0.40323 0.40323 0
716 Good 0.86486 0.86486 0
717 Good 0.86486 0.86486 0
718 Good 0.86486 0.86486 0
719 Good 0.86486 0.86486 0
720 Good 0.69355 0.69355 0
721 Good 0.86486 0.86486 0
722 Good 0.69355 0.69355 0
723 Good 0.59740 0.59740 0
724 Good 0.87234 0.87234 0
725 Good 0.86486 0.86486 0
726 Good 0.86486 0.86486 0
727 Good 0.86486 0.86486 0
728 Good 0.59740 0.59740 0
729 Bad 0.40323 0.40323 0
730 Good 0.86486 0.86486 0
731 Bad 0.40323 0.40323 0
732 Good 0.59740 0.59740 0
733 Good 0.87234 0.87234 0
734 Good 0.86486 0.86486 0
735 Good 0.86486 0.86486 0
736 Good 0.69355 0.69355 0
737 Bad 0.40323 0.40323 0
738 Good 0.59740 0.59740 0
739 Good 0.86486 0.86486 0
740 Good 0.69355 0.69355 0
741 Good 0.59740 0.59740 0
742 Good 0.87234 0.87234 0
743 Good 0.86486 0.86486 0
744 Good 0.59740 0.59740 0
745 Bad 0.21212 0.21212 0
746 Good 0.59740 0.59740 0
747 Good 0.59740 0.59740 0
748 Good 0.59740 0.59740 0
749 Good 0.86486 0.86486 0
750 Good 0.86486 0.86486 0
751 Good 0.59740 0.59740 0
752 Good 0.59740 0.59740 0
753 Good 0.87234 0.87234 0
754 Good 0.86486 0.86486 0
755 Good 0.86486 0.86486 0
756 Good 0.59740 0.59740 0
757 Good 0.86486 0.86486 0
758 Good 0.86486 0.86486 0
759 Good 0.86486 0.86486 0
760 Good 0.59740 0.59740 0
761 Good 0.86486 0.86486 0
762 Good 0.59740 0.59740 0
763 Good 0.59740 0.59740 0
764 Good 0.86486 0.86486 0
765 Good 0.86486 0.86486 0
766 Good 0.87234 0.87234 0
767 Good 0.59740 0.59740 0
768 Good 0.86486 0.86486 0
769 Bad 0.40323 0.40323 0
770 Good 0.86486 0.86486 0
771 Good 0.59740 0.59740 0
772 Bad 0.21212 0.21212 0
773 Good 0.86486 0.86486 0
774 Good 0.86486 0.86486 0
775 Good 0.86486 0.86486 0
776 Good 0.59740 0.59740 0
777 Good 0.86486 0.86486 0
778 Good 0.59740 0.59740 0
779 Good 0.86486 0.86486 0
780 Bad 0.40323 0.40323 0
781 Bad 0.33333 0.33333 0
782 Good 0.86486 0.86486 0
783 Good 0.87234 0.87234 0
784 Good 0.69355 0.69355 0
785 Good 0.87234 0.87234 0
786 Good 0.69355 0.69355 0
787 Good 0.86486 0.86486 0
788 Good 0.86486 0.86486 0
789 Bad 0.40323 0.40323 0
790 Bad 0.21212 0.21212 0
791 Bad 0.40323 0.40323 0
792 Good 0.86486 0.86486 0
793 Good 0.86486 0.86486 0
794 Good 0.86486 0.86486 0
795 Good 0.86486 0.86486 0
796 Good 0.86486 0.86486 0
797 Good 0.59740 0.59740 0
798 Good 0.86486 0.86486 0
799 Good 0.86486 0.86486 0
800 Good 0.87234 0.87234 0
801 Good 0.86486 0.86486 0
802 Good 0.87234 0.87234 0
803 Good 0.59740 0.59740 0
804 Good 0.86486 0.86486 0
805 Good 0.87234 0.87234 0
806 Bad 0.21212 0.21212 0
807 Good 0.87234 0.87234 0
808 Good 0.86486 0.86486 0
809 Bad 0.40323 0.40323 0
810 Good 0.87234 0.87234 0
811 Good 0.87234 0.87234 0
812 Good 0.87234 0.87234 0
813 Bad 0.21212 0.21212 0
814 Bad 0.21212 0.21212 0
815 Bad 0.21212 0.21212 0
816 Bad 0.40323 0.40323 0
817 Good 0.86486 0.86486 0
818 Good 0.86486 0.86486 0
819 Bad 0.21212 0.21212 0
820 Good 0.59740 0.59740 0
821 Good 0.86486 0.86486 0
822 Good 0.86486 0.86486 0
823 Bad 0.21212 0.21212 0
824 Good 0.59740 0.59740 0
825 Good 0.86486 0.86486 0
826 Good 0.59740 0.59740 0
827 Good 0.59740 0.59740 0
828 Good 0.86486 0.86486 0
829 Bad 0.21212 0.21212 0
830 Good 0.69355 0.69355 0
831 Good 0.86486 0.86486 0
832 Good 0.59740 0.59740 0
833 Bad 0.21212 0.21212 0
834 Good 0.69355 0.69355 0
835 Good 0.86486 0.86486 0
836 Good 0.59740 0.59740 0
837 Good 0.86486 0.86486 0
838 Good 0.86486 0.86486 0
839 Good 0.59740 0.59740 0
840 Good 0.86486 0.86486 0
841 Bad 0.21212 0.21212 0
842 Good 0.86486 0.86486 0
843 Good 0.86486 0.86486 0
844 Good 0.86486 0.86486 0
845 Good 0.86486 0.86486 0
846 Good 0.69355 0.69355 0
847 Good 0.86486 0.86486 0
848 Good 0.86486 0.86486 0
849 Good 0.59740 0.59740 0
850 Good 0.59740 0.59740 0
851 Good 0.59740 0.59740 0
852 Good 0.86486 0.86486 0
853 Good 0.86486 0.86486 0
854 Good 0.59740 0.59740 0
855 Good 0.86486 0.86486 0
856 Good 0.86486 0.86486 0
857 Good 0.86486 0.86486 0
858 Good 0.86486 0.86486 0
859 Good 0.59740 0.59740 0
860 Good 0.86486 0.86486 0
861 Good 0.86486 0.86486 0
862 Good 0.86486 0.86486 0
863 Good 0.59740 0.59740 0
864 Good 0.86486 0.86486 0
865 Good 0.86486 0.86486 0
866 Good 0.86486 0.86486 0
867 Good 0.59740 0.59740 0
868 Good 0.86486 0.86486 0
869 Good 0.86486 0.86486 0
870 Good 0.59740 0.59740 0
871 Good 0.86486 0.86486 0
872 Good 0.86486 0.86486 0
873 Good 0.59740 0.59740 0
874 Good 0.86486 0.86486 0
875 Good 0.59740 0.59740 0
876 Good 0.69355 0.69355 0
877 Good 0.59740 0.59740 0
878 Good 0.86486 0.86486 0
879 Good 0.59740 0.59740 0
880 Good 0.86486 0.86486 0
881 Good 0.86486 0.86486 0
882 Good 0.86486 0.86486 0
883 Bad 0.33333 0.33333 0
884 Good 0.86486 0.86486 0
885 Bad 0.40323 0.40323 0
886 Good 0.59740 0.59740 0
887 Good 0.69355 0.69355 0
888 Bad 0.40323 0.40323 0
889 Good 0.86486 0.86486 0
890 Good 0.86486 0.86486 0
891 Good 0.59740 0.59740 0
892 Good 0.86486 0.86486 0
893 Good 0.59740 0.59740 0
894 Bad 0.40323 0.40323 0
895 Good 0.86486 0.86486 0
896 Good 0.86486 0.86486 0
897 Good 0.59740 0.59740 0
898 Good 0.86486 0.86486 0
899 Good 0.86486 0.86486 0
900 Good 0.59740 0.59740 0
901 Good 0.59740 0.59740 0
902 Good 0.86486 0.86486 0
903 Good 0.86486 0.86486 0
904 Good 0.86486 0.86486 0
905 Good 0.86486 0.86486 0
906 Good 0.59740 0.59740 0
907 Good 0.59740 0.59740 0
908 Good 0.69355 0.69355 0
909 Good 0.86486 0.86486 0
910 Good 0.87234 0.87234 0
911 Good 0.86486 0.86486 0
912 Bad 0.40323 0.40323 0
913 Good 0.69355 0.69355 0
914 Good 0.86486 0.86486 0
915 Good 0.59740 0.59740 0
916 Bad 0.40323 0.40323 0
917 Good 0.86486 0.86486 0
918 Good 0.59740 0.59740 0
919 Good 0.59740 0.59740 0
920 Good 0.59740 0.59740 0
921 Good 0.86486 0.86486 0
922 Good 0.86486 0.86486 0
923 Good 0.59740 0.59740 0
924 Bad 0.40323 0.40323 0
925 Good 0.59740 0.59740 0
926 Good 0.59740 0.59740 0
927 Good 0.59740 0.59740 0
928 Bad 0.21212 0.21212 0
929 Good 0.86486 0.86486 0
930 Good 0.59740 0.59740 0
931 Good 0.59740 0.59740 0
932 Bad 0.40323 0.40323 0
933 Good 0.86486 0.86486 0
934 Good 0.86486 0.86486 0
935 Good 0.59740 0.59740 0
936 Good 0.69355 0.69355 0
937 Good 0.86486 0.86486 0
938 Bad 0.40323 0.40323 0
939 Bad 0.40323 0.40323 0
940 Good 0.86486 0.86486 0
941 Good 0.86486 0.86486 0
942 Good 0.86486 0.86486 0
943 Good 0.86486 0.86486 0
944 Good 0.86486 0.86486 0
945 Good 0.59740 0.59740 0
946 Good 0.69355 0.69355 0
947 Good 0.59740 0.59740 0
948 Good 0.86486 0.86486 0
949 Good 0.86486 0.86486 0
950 Good 0.86486 0.86486 0
951 Bad 0.40323 0.40323 0
952 Bad 0.21212 0.21212 0
953 Good 0.69355 0.69355 0
954 Good 0.86486 0.86486 0
955 Good 0.59740 0.59740 0
956 Good 0.59740 0.59740 0
957 Good 0.86486 0.86486 0
958 Good 0.87234 0.87234 0
959 Good 0.59740 0.59740 0
960 Good 0.69355 0.69355 0
961 Good 0.86486 0.86486 0
962 Bad 0.40323 0.40323 0
963 Good 0.86486 0.86486 0
964 Good 0.86486 0.86486 0
965 Bad 0.40323 0.40323 0
966 Good 0.69355 0.69355 0
967 Good 0.69355 0.69355 0
968 Good 0.86486 0.86486 0
969 Good 0.86486 0.86486 0
970 Good 0.59740 0.59740 0
971 Good 0.87234 0.87234 0
972 Good 0.86486 0.86486 0
973 Good 0.59740 0.59740 0
974 Bad 0.21212 0.21212 0
975 Good 0.86486 0.86486 0
976 Good 0.86486 0.86486 0
977 Good 0.87234 0.87234 0
978 Good 0.69355 0.69355 0
979 Good 0.86486 0.86486 0
980 Good 0.69355 0.69355 0
981 Bad 0.40323 0.40323 0
982 Good 0.86486 0.86486 0
983 Good 0.86486 0.86486 0
984 Bad 0.21212 0.21212 0
985 Good 0.86486 0.86486 0
986 Good 0.59740 0.59740 0
987 Good 0.86486 0.86486 0
988 Good 0.86486 0.86486 0
989 Good 0.59740 0.59740 0
990 Bad 0.40323 0.40323 0
991 Good 0.86486 0.86486 0
992 Good 0.86486 0.86486 0
993 Good 0.59740 0.59740 0
994 Bad 0.21212 0.21212 0
995 Good 0.86486 0.86486 0
996 Good 0.86486 0.86486 0
997 Good 0.59740 0.59740 0
998 Good 0.86486 0.86486 0
999 Bad 0.21212 0.21212 0
1000 Good 0.69355 0.69355 0

To me, a teacher and a researcher are one.

my sessionInfo …

print(sessionInfo(), locale = FALSE)
## R version 2.15.2 (2012-10-26)
## Platform: i386-w64-mingw32/i386 (32-bit)
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] boot_1.3-7         vcd_1.2-13         colorspace_1.2-1  
##  [4] RColorBrewer_1.0-5 scales_0.2.3       ggplot2_0.9.3     
##  [7] ROCR_1.0-4         gplots_2.11.0      MASS_7.3-23       
## [10] KernSmooth_2.23-8  caTools_1.14       gdata_2.12.0.2    
## [13] gtools_2.7.0       ada_2.0-3          rpart_4.1-0       
## [16] nnet_7.3-5         e1071_1.6-1        class_7.3-5       
## [19] randomForest_4.6-7 caret_5.15-61      reshape2_1.2.2    
## [22] plyr_1.8           lattice_0.20-13    foreach_1.4.0     
## [25] cluster_1.14.3     knitr_1.0.5       
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-5    codetools_0.2-8 dichromat_2.0-0 digest_0.6.3   
##  [5] evaluate_0.4.3  formatR_0.7     gtable_0.1.2    iterators_1.0.6
##  [9] labeling_0.1    munsell_0.4     proto_0.3-10    stringr_0.6.2  
## [13] tools_2.15.2