SCORE Fun!
Scoring Models in R, SAS with a Credit Scoring Example
CSJP
A teacher might score like this …
Load Data Set
# Load Roster Data
load("./RData/OriginalRoster.RData")
print(roster)
## Student Math Science English
## 1 John Davis 502 95 25
## 2 Angela Williams 600 99 22
## 3 Bullwinkle Moose 412 80 18
## 4 David Jones 358 82 15
## 5 Janice Markhammer 495 75 20
## 6 Cheryl Cushing 512 85 28
## 7 Reuven Ytzrhak 410 80 15
## 8 Greg Knox 625 95 30
## 9 Joel England 573 89 27
## 10 Mary Rayburn 522 86 18
Modeling
z <- scale(roster[, 2:4]) # standardize different scales
score <- apply(z, 1, mean) # take means
roster <- cbind(roster, score) # combine with original roster
print(roster)
## Student Math Science English score
## 1 John Davis 502 95 25 0.5592
## 2 Angela Williams 600 99 22 0.9238
## 3 Bullwinkle Moose 412 80 18 -0.8565
## 4 David Jones 358 82 15 -1.1620
## 5 Janice Markhammer 495 75 20 -0.6290
## 6 Cheryl Cushing 512 85 28 0.3532
## 7 Reuven Ytzrhak 410 80 15 -1.0476
## 8 Greg Knox 625 95 30 1.3379
## 9 Joel England 573 89 27 0.6978
## 10 Mary Rayburn 522 86 18 -0.1768
Evaluation
y <- quantile(score, c(0.8, 0.6, 0.4, 0.2)) # set criteria
print(y)
## 80% 60% 40% 20%
## 0.7430 0.4356 -0.3577 -0.8948
roster$grade[score >= y[1]] <- "A" # grading
roster$grade[score < y[1] & score >= y[2]] <- "B"
roster$grade[score < y[2] & score >= y[3]] <- "C"
roster$grade[score < y[3] & score >= y[4]] <- "D"
roster$grade[score < y[4]] <- "F"
A researcher might score like this …
Load Data Set
# Load German Credit data
require(caret)
data(GermanCredit)
dim(GermanCredit)[1] # No. of obs
## [1] 1000
dim(GermanCredit)[2] # No. of variables (original)
## [1] 62
Modeling (1)
# Build a container for German Credit Data Set
gcDS = new.env()
# check container data after clean-up and partitions
# training data
length(attributes(gcDS$train)$names) # No. of variables
## [1] 22
length(attributes(gcDS$train)$row.names) # No. of obs
## [1] 700
# testing data
length(attributes(gcDS$test)$names) # No. of variables
## [1] 22
length(attributes(gcDS$test)$row.names) # No. of obs
## [1] 300
Modeling (2)
# Build a container for Generalized Linear Model (GLM)
gcGLM = new.env(parent = gcDS)
# Build a container for Random Forest Model (RFOREST)
require(randomForest)
gcRFOREST = new.env(parent = gcDS)
# Build a container for Support Vector Machines Model (SVM)
require(e1071)
gcSVM = new.env(parent = gcDS)
# Build a container for 1-hidden-layer Neural Network Model (NNET)
require(nnet)
gcNNET = new.env(parent = gcDS)
# Build a container for Stochastic Boosting Model (BOOST)
require(ada)
gcBOOST = new.env(parent = gcDS)
# Build a container for Naive Bayes Classifier Model (NBayes)
require(e1071)
gcNBayes = new.env(parent = gcDS)
# Build a container for k-Nearest Neighbour Classification Model (KNN)
require(class)
gcKNN = new.env(parent = gcDS)
# Build a container for Linear Discriminant Analysis Model (LDA)
require(MASS)
gcLDA = new.env(parent = gcDS)
Evaluation (1)
# Area Under the ROC Curve (AUC)
|
GLM
|
rFOREST
|
SVM
|
NNET
|
BOOST
|
NBayes
|
kNN
|
LDA
|
AUC
|
76.00%
|
77.04%
|
74.37%
|
74.50%
|
74.34%
|
72.09%
|
63.05%
|
76.64%
|
# ROC curves
Evaluation (2)
# Given Cost Matrix (Actual vs. Predicted)
|
Bad
|
Good
|
Bad
|
0
|
5
|
Good
|
1
|
0
|
# Cost Curves
Modeling in R, Scoring in SAS chosen for ‘that’ Big Data
Verifying their scores for comparison.
(click on any column header to sort table automatically! )
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.33333 |
0.33333 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.87234 |
0.87234 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.69355 |
0.69355 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.40323 |
0.40323 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Good |
0.59740 |
0.59740 |
0 |
Good |
0.86486 |
0.86486 |
0 |
Bad |
0.21212 |
0.21212 |
0 |
Good |
0.69355 |
0.69355 |
0 |
To me, a teacher and a researcher are one.
my sessionInfo …
print(sessionInfo(), locale = FALSE)
## R version 2.15.2 (2012-10-26)
## Platform: i386-w64-mingw32/i386 (32-bit)
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] boot_1.3-7 vcd_1.2-13 colorspace_1.2-1
## [4] RColorBrewer_1.0-5 scales_0.2.3 ggplot2_0.9.3
## [7] ROCR_1.0-4 gplots_2.11.0 MASS_7.3-23
## [10] KernSmooth_2.23-8 caTools_1.14 gdata_2.12.0.2
## [13] gtools_2.7.0 ada_2.0-3 rpart_4.1-0
## [16] nnet_7.3-5 e1071_1.6-1 class_7.3-5
## [19] randomForest_4.6-7 caret_5.15-61 reshape2_1.2.2
## [22] plyr_1.8 lattice_0.20-13 foreach_1.4.0
## [25] cluster_1.14.3 knitr_1.0.5
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-5 codetools_0.2-8 dichromat_2.0-0 digest_0.6.3
## [5] evaluate_0.4.3 formatR_0.7 gtable_0.1.2 iterators_1.0.6
## [9] labeling_0.1 munsell_0.4 proto_0.3-10 stringr_0.6.2
## [13] tools_2.15.2